Exercise 2

(a) Which solution of (1) is equal to $x e^{-x^{2}}$ on the x-axis?
(b) Plot the solution as a function of x and t, and describe the image of the x-axis.

Solution

Equation (1) is

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}=0 . \tag{1}
\end{equation*}
$$

The solution that's equal to $x e^{-x^{2}}$ on the x-axis satisfies the following initial value problem.

$$
\begin{aligned}
& \frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}=0, \quad-\infty<x<\infty,-\infty<t<\infty \\
& u(x, 0)=x e^{-x^{2}}
\end{aligned}
$$

Make the change of variables, $\alpha=x+t$ and $\beta=x-t$, and use the chain rule to write the derivatives in terms of these new variables.

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=\frac{\partial u}{\partial \alpha} \frac{\partial \alpha}{\partial x}+\frac{\partial u}{\partial \beta} \frac{\partial \beta}{\partial x}=\frac{\partial u}{\partial \alpha}(1)+\frac{\partial u}{\partial \beta}(1)=\frac{\partial u}{\partial \alpha}+\frac{\partial u}{\partial \beta} \\
& \frac{\partial u}{\partial t}=\frac{\partial u}{\partial \alpha} \frac{\partial \alpha}{\partial t}+\frac{\partial u}{\partial \beta} \frac{\partial \beta}{\partial t}=\frac{\partial u}{\partial \alpha}(1)+\frac{\partial u}{\partial \beta}(-1)=\frac{\partial u}{\partial \alpha}-\frac{\partial u}{\partial \beta}
\end{aligned}
$$

The PDE then becomes

$$
\begin{aligned}
0 & =\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x} \\
& =\left(\frac{\partial u}{\partial \alpha}-\frac{\partial u}{\partial \beta}\right)+\left(\frac{\partial u}{\partial \alpha}+\frac{\partial u}{\partial \beta}\right) \\
& =2 \frac{\partial u}{\partial \alpha} .
\end{aligned}
$$

Divide both sides by 2 .

$$
\frac{\partial u}{\partial \alpha}=0
$$

Integrate both sides partially with respect to α to get u.

$$
u(\alpha, \beta)=f(\beta)
$$

Here f is an arbitrary function. Now that the general solution to the PDE is known, change back to the original variables.

$$
u(x, t)=f(x-t)
$$

To determine f, use the initial condition.

$$
u(x, 0)=f(x)=x e^{-x^{2}}
$$

What this actually means is that $f(w)=w e^{-w^{2}}$, where w is any expression, so

$$
f(x-t)=(x-t) e^{-(x-t)^{2}} .
$$

Therefore,

$$
u(x, t)=(x-t) e^{-(x-t)^{2}}
$$

Below is a plot of $u(x, t)$ versus x at several moments in time.

